PARTIALLY ORDERED GENERALIZED PATTERNS AND k - ARY

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partially Ordered Generalized Patterns and k-ary Words

Recently, Kitaev [9] introduced partially ordered generalized patterns (POGPs) in the symmetric group, which further generalize the generalized permutation patterns introduced by Babson and Steingrı́msson [1]. A POGP p is a GP some of whose letters are incomparable. In this paper, we study the generating functions (g.f.) for the number of k-ary words avoiding some POGPs. We give analogues, exten...

متن کامل

Kitaev And

Recently, Kitaev [Ki2] introduced partially ordered generalized patterns (POGPs) in the symmetric group, which further generalize the generalized permutation patterns introduced by Babson and Steingŕımsson [BS]. A POGP p is a GP some of whose letters are incomparable. In this paper, we study the generating functions (g.f.) for the number of k-ary words avoiding some POGPs. We give analogues, ex...

متن کامل

Partially Ordered Patterns and Compositions

A partially ordered (generalized) pattern (POP) is a generalized pattern some of whose letters are incomparable, an extension of generalized permutation patterns introduced by Babson and Steingŕımsson. POPs were introduced in the symmetric group by Kitaev [19, 21], and studied in the set of k-ary words by Kitaev and Mansour [22]. Moreover, Kitaev et al. [23] introduced segmented POPs in composi...

متن کامل

. C O ] 1 O ct 2 00 6 PARTIALLY ORDERED PATTERNS AND COMPOSITIONS

A partially ordered (generalized) pattern (POP) is a generalized pattern some of whose letters are incomparable, an extension of generalized permutation patterns introduced by Babson and Steingŕımsson. POPs were introduced in the symmetric group by Kitaev [19, 21], and studied in the set of k-ary words by Kitaev and Mansour [22]. Moreover, Kitaev et al. [23] introduced segmented POPs in composi...

متن کامل

AVOIDANCE OF PARTIALLY ORDERED PATTERNS OF THE FORM k-σ-k

Sergey Kitaev [4] has shown that the exponential generating function for permutations avoiding the generalized pattern σ-k, where σ is a pattern without dashes and k is one greater than the largest element in σ, is determined by the exponential generating function for permutations avoiding σ. We show that the exponential generating function for permutations avoiding the partially ordered patter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002